Na matter hou correct a mathematical thearem may appear

i

Historical Math Tidbit

Isaac Newton and Gottfried Leibniz, two prominent 17th century mathematicians, both independently invented calculus at the ! same time. While today both men are given ! credit for the discovery, at the time a heated : ! rivalry took place. It was a different world! ithen with national pride a significant consid-! jeration. Mathematicians from mainlandi Europe supported Leibniz and mathematicians; from England were strongly behind Newton, each side accusing the other of stealing the ! ideas from the other man. It became so bad ! that England refused to teach anything but! ! Newtonian calculus for many decades and fell! ibehind the rest of Europe in mathematical! ; discoveries.

Today it is generally conceded that Newton discovered calculus first but that; Leibniz developed a better system for using it.

Days to Remember:

April 21st-zone competitions
May 9th-regional competition

Math On is an annual math competition for junior high students. Created by math teachers Irene Angelopoulos and Brenda Vaughan it focuses on engaging gifted math students by challenging them to compete against each other solving word problems. It is currently in its fourth year and is growing rapidly.

The figure shown consists of 3 layers of cubes with no gaps. Suppose the complete exterior of the figure, including the bottom, is painted red and then separated into individual cubes.

HOW MANY CUBES WILL HAVE EXACTLY 3 RED FACES?

Number of the Quarter

iZero (0) \rightarrow zero might seem like a dull number but it's actually quite! ifascinating. Unlike other whole numbers, you can't see zero. You don't ! ¡look out the window and see zero trees...you just don't see trees. Be; cause of this peculiarity it wasn't invented until significantly after the i ;other whole numbers. It serves as a place holder; it's an even number; ;
it's the only number you can't divide by and the first number that we ! learn that takes us into "math land".

Da not warry about your difficulties in mathematics, \mathcal{J} assure you that mine are greater. - albert Einstein, 1879-1955

6				4	1			
	5	2		8			6	
4	1		2	7				2
2				5				
9				3	8		1	4
					3			
	8			1		3	2	
		1	5				4	

2) A billion (a Gigabyte is a billion bytes)
3) Binary (computers are all based on binary)
4) $A=\pi r^{2}$
!5) They're all prime numbers.

